Impact Factor 2021: 3.041 (@Clarivate Analytics)
5-Year Impact Factor: 2.776 (@Clarivate Analytics)
Impact Factor Rank: 10/24, Q2 (Tropical Medicine)
  • Users Online: 683
  • Print this page
  • Email this page
Year : 2018  |  Volume : 11  |  Issue : 5  |  Page : 342-349

Synergistic renoprotective effect of a compiled branched-chain amino acids and Cymbopogon schoenanthus extract against experimentally induced oxido-nitrosative renal insult

1 Physiology Department, National Organization for Drug Control and Research, Giza 12553, Egypt
2 Zoology Department-Faculty of Women for Arts, Science and Education, Ain Shams University, Asmaa Fahmy Street Heliopolis, 11566 Cairo, Egypt
3 Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt

Correspondence Address:
Mohamad Warda
Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1995-7645.233182

Rights and Permissions

Objective: To better investigate the protective role of branched-chain amino acids (BCAAs) and Cymbopogon schoenanthus (CS) extract against the potassium dichromate (PDC)-induced oxido-nitrosative nephrotoxic insult in the experimental rat model. Methods: Thirty male rats were randomly divided into five equal groups: The 1st group served as control; the 2nd was injected with a single dose of PDC (15 mg/kg b.w i.p.); the 3rd, 4th, and 5th groups were respectively treated with BCAAs, CS, and their combination for 15 d prior to induction of renal insult via PDC single dose (15 mg/kg b.w s.c.). The experimental period was terminated in all groups 2 d after induction of renal insult. The harvested kdney samples were divided for biochemical assays and histological examination. Results: The PDC-induced nephrotoxic effect caused a depletion of renal oxidative scavengers glutathione, superoxide dismutase with consequent lipo-oxidative cellular membrane deterioration manifested by a rise in malonaldehyde, oxidized glutathione, myeloperoxidase and the concomitant increase in inflammatory response elements tumor necrosis factor α, nitric oxide, and interleukin 1 β. Moreover, the comet assay and increased 8-hydroxy-2-deoxyguanosine proved an accelerated apoptotic DNA fragmentation. These local renal changes were met with global altered blood biochemistry. The BCAAs and CS or their compiled administration showed an ameliorative effect against PDC-induced nephrotoxic in a synergistic pattern. Conclusions: Both BCAAs and CS or their combined administration afford potential competitors against renal insult induced by polyvalent anion pollutants in experimentally studied animals model. As a route for novel drug discovery, further investigation should be attempted to optimize their augmenting reno-protecting potential.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded343    
    Comments [Add]    
    Cited by others 1    

Recommend this journal