Impact Factor 2019: 1.940 (@Clarivate Analytics)
5-Year Impact Factor: 1.955 (@Clarivate Analytics)
  • Users Online: 223
  • Print this page
  • Email this page
Export selected to
Reference Manager
Medlars Format
RefWorks Format
BibTex Format
  Access statistics : Table of Contents
   2018| July  | Volume 11 | Issue 7  
    Online since July 31, 2018

  Archives   Previous Issue   Next Issue   Most popular articles   Most cited articles
Hide all abstracts  Show selected abstracts  Export selected to
  Viewed PDF Cited
A critical review on Nepal Dock (Rumex nepalensis): A tropical herb with immense medicinal importance
Samrin Shaikh, Varsha Shriram, Amrita Srivastav, Pranoti Barve, Vinay Kumar
July 2018, 11(7):405-414
Rumex nepalensis Spreng. (Polygonaceae) commonly known as Nepal Dock has wide-spectrum therapeutic potencies and is extensively used for centuries in traditional medicine systems. The leaves of this plant are edible and a rich source of natural antioxidants. They act as a possible food supplement and are largely used in pharmaceutical industry. Extracts and metabolites from this plant exhibits pharmacological activities including anti-inflammatory, antioxidant, antibacterial, antifungal, antiviral, insecticidal, purgative, analgesic, antipyretic, anti-algal, central nervous system depressant, genotoxic, wound healing and skeletal muscle relaxant activity. Due to its remarkable biological activities, it has the potential to act as a rich source of drug against life threatening diseases. However, more studies are needed to scientifically validate the traditional uses of this plant, beside isolating and identifying their active principles and characterizing the mechanisms of action. We present herein a critical account of its botany, ecology, traditional uses, phytoconstituent profile and major pharmacological activities reported in recent years and therefore will provide a source of information on this plant for further studies.
  4,864 512 -
Phytochemical analysis and antioxidant profile of methanolic extract of seed, pulp and peel of Baccaurea ramiflora Lour.
Md Sahab Uddin, Md Sarwar Hossain, Abdullah Al Mamun, Devesh Tewari, Md Asaduzzaman, Md Siddiqul Islam, Mohamed M Abdel-Daim
July 2018, 11(7):443-450
Objective: To analyze the phytochemical constituents responsible for the plausible antioxidant effect of methanolic extract of the seed, pulp and peel of Baccaurea ramiflora Lour. Methods: Fresh seed, pulp, and peel of Baccaurea ramiflora fruits were extracted with methanol (MEBRse, MEBRpu, MEBRpe) and evaluated by phytochemical analysis for their content of innumerable metabolites (primary and secondary) viz. carbohydrates, alkaloids, glycosides, tannins, phenols, terpenoids, flavonoids, proteins, and fixed oils. The antioxidant efficacy was assessed through different assay methods viz. 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, total antioxidant capacity (TAC) and reducing power capacity (RPC). Estimation of total phenolic content (TPC), and total flavonoid content (TFC) was also done to confirm the presence of these phytochemicals. Results: It was revealed from the phytochemical analysis of MEBRse that alkaloids, glycosides, carbohydrates, phenols, and flavonoids were present, while that of MEBRpu showed the existence of carbohydrates, proteins, alkaloids, glycosides, phenols, saponins, flavonoids, and fixed oils. Presence of carbohydrates, alkaloids, phenols, tannins, flavonoids, and terpenoids were found in the MEBRpe. A significant antioxidant activity was revealed by the MEBRpu [EC50: (27.612 ± 1.375) μg/mL], compared to MEBRpe, and MEBRse in DPPH assay. The ranking order for RPC was MEBRpu > MEBRpe > MEBRse respectively. The EC50 value of TAC of the MEBRpu, MEBRpe, and MEBRse were (25.107 ± 0.744) μg/mL, (241.127 ± 7.463) μg/mL and (372.364 ± 11.030) μg/mL, respectively. Quantity of TPC and TFC were the highest in the MEBRpu (124.360 ± 2.078 mg GAE/g and 107.527 ±1.900 mg QRE/g extract) rather than MEBRpe and MEBRse extracts. Conclusions: This study suggests that MEBRpu has a significantly higher antioxidant property than MEBRpe and MEBRse. These extracts might be advantageous in prevention or decelerating the progress of different diseases related to oxidative-stress/damage. Moreover, detailed analysis of these extracts is required to identify the presence of promising compound(s) responsible for their antioxidant activity.
  4,075 728 -
Chemical analysis and antioxidant content of various propolis samples collected from different regions and their impact on antimicrobial activities
Soumaya Touzani, Noori Al-Waili, Nawal El Menyiy, Bratko Filipic, Adriana Pereyra, Ilham EL Arabi, Wail Al-Waili, Badiaa Lyoussi
July 2018, 11(7):436-442
Objective: To assess the antioxidant content, antimicrobial and antioxidant activities of various propolis samples. Methods: Seven propolis samples were collected from different locations in Morocco, which are characterized by different plant predominant vegetations. The resin, wax and balsam of hydroalcoholic extract of propolis content were identified, and the antioxidant content was analyzed with the use of HPLC and colorimetric methods. The antioxidant activity was assessed by DPPH, ABTS.+ and ferric reducing power assays. The antimicrobial activity was assessed against bacterial species, including methicillin resistant Staphylococcus aureus and Candida albicans, and expressed as the minimal inhibitory concentration. Results: The propolis samples showed significant variations in the chemical composition and in the antioxidant or antimicrobial activities even when the samples were collected from the same location. Propolis with high resin and low wax content had high level of antioxidant compounds, and strong antioxidant and antimicrobial activities. Gram-positive bacteria, especially, methicillin resistant Staphylococcus aureus were more sensitive to all propolis samples than Gram-negative bacteria and Candida albicans. Conclusions: The chemical composition and the antioxidant and antimicrobial activities of various propolis samples are different and rely on the geographic and plant origin of propolis collection. Propolis samples with low wax and high resin content might be more suitable to be used in future preclinical or clinical investigations.
  1,841 423 -
Zika virus: Is Pakistan next?
Braira Wahid, Amjad Ali, Shazia Rafique, Muhammad Idrees
July 2018, 11(7):451-452
  1,921 179 -
Phytochemical, antioxidant and hepatoprotective effects of different fractions of Moringa oleifera leaves methanol extract against liver injury in animal model
Attia H Atta, Soad M Nasr, Abduljalil H Almaweri, Doaa Sedky, Amany M Mohamed, Hassan M Desouky, Mostafa A Shalaby
July 2018, 11(7):423-429
Objective: To evaluate the potential antioxidant and hepatoprotective effects of n-hexane, dichloromethane(DCM), ethyl acetate(EtOAc), n-butanol and aqueous fractions of Moringa oleifera(M. oleifera) leaves methanol extract against carbon tetrachloride(CCl4)-induced liver injury in rats. Methods: These fractions were prepared from the M. oleifera leaves methanol extract by solubilization in water and partitioning in n-hexane, EtOAc, DCM and n-butanol. Their phyto-components were identified by GC-MS analysis. The in vitro antioxidant effect of these fractions was carried out by assessment of 1,1-diphenyl-2-picrylhydrazyl scavenging activity. A total of 40 Sprague Dawley rats were allocated into 8 equal groups: group 1 given olive oil (1 mL/kg b.wt.), group 2 injected with CCl4, group 3 to 7 administered with n-hexane, DCM, EtOAc, n-butanol and aqueous fractions, respectively after CCl4, group 8 administered with silymarin after CCl4. The activities of aspartate aminotransferase, alanine aminotransferase, and the levels of total cholesterol, triglycerides, glucose, total proteins and albumin in serum were determined spectrophotometrically. Glutathione reduced, lipid peroxide by-products levels, glutathione-s-transferase and catalase enzyme activities in the liver homogenate were determined by spectrophotometer. Liver specimens were also examined for histopathological alterations under light microscope. Results: The GC-MS analysis of different fractions of the M. oleifera leaves methanol extract revealed that n-hexane, DCM, EtOAc, n-butanol, and aqueous fractions contained 17, 22, 23, 19 and 32 compounds, respectively. The percent and the molecular structure of each component in each fraction were identified. The n-butanol and EtOAc fractions exhibited the strongest in vitro antioxidant activity against 1,1-diphenyl-2-picrylhydrazyl. CCl4 significantly decreased glutathione reduced and total proteins concentration and glutathione-s-transferase and catalase activities but increased lipid peroxide by-products and total cholesterol levels. The n-hexane followed by aqueous and DCM fractions were the most potent to regulate serum enzyme activities and lipid peroxide by-products levels in the liver homogenate. Conclusions: n-hexane, DCM, and aqueous fractions have the highest effectiveness against CCl4-induced hepatotoxicity. Isolation and purification of the active constituents require further experiments.
  1,554 474 -
Attenuation of oxidative stress-induced neuronal cell death by Hydnophytum formicarum Jack.
Naw Hser Gay, Kamonrat Phopin, Wilasinee Suwanjang, Waralee Ruankham, Prapimpun Wongchitrat, Supaluk Prachayasittikul, Virapong Prachayasittikul
July 2018, 11(7):415-422
Objective: To investigate protective effects of Hydnophytum formicarum Jack. (H. formicarum) extracts via regulation of SIRT1-FOXO3a-ADAM10 signaling and antioxidant activity against H2O2-induced neurotoxicity in neuroblastoma SH-SY5Y cells. Methods: Cell viability and apoptosis of neuronal cells pretreated with H. formicarum Jack. extracts under oxidative stress were determined by MTT assay and flow cytometry. The intracellular reactive oxygen species (ROS) was performed using Carboxy-DCFDA assay. Additionally, a profile of protein expressions related to neuroprotection was detected by western blot analysis. Results: The plant extracts (methanol and ethyl acetate) elicited protective effects on the neuronal cell death as performed by the MTT assay and by apoptosis analysis via the activation of BCL-2. Both ethyl acetate and methanol extracts exerted inhibitory effects against H2O2-induced ROS generation in the SH-SY5Y cells. Furthermore, the possible mechanism of neuroprotection of H. formicarum Jack. was observed through its antioxidant properties by maintaining the levels of catalase and SOD2 proteins as well as activating SIRT1-FOXO3a pathway. Importantly, pretreatment of neuronal cells with H. formicarum Jack. significantly recovered the levels of ADAM10 protein compared with the H2O2 treatment alone. Conclusions: The recent findings suggest the protective effects of H. formicarum Jack. plant extracts on attenuating H2O2-induced neurotoxicity in human SH-SY5Y cells.
  1,672 332 -
Inhibitory activities of plumbagin on cell migration and invasion and inducing activity on cholangiocarcinoma cell apoptosis
Luxsana Panrit, Tullayakorn Plengsuriyakarn, Pongsakorn Martviset, Kesara Na-Bangchang
July 2018, 11(7):430-435
Objective: To investigate the cytotoxic, apoptotic and inhibitory activities on cell migration and invasion of plumbagin in the human cholangiocarcinoma (CCA) cell line (CL-6) in comparison with human embryonic fibroblast cell line (OUMS). Methods: Cytotoxicity activity was evaluated using MTT assay. Inhibitory effect on cell migration and invasion were investigated using label-free real-time cell analysis and QCM ECMatrix cell invasion chamber, respectively. Apoptotic activity was evaluated using flow cytometry and CellEvent™ Caspase 3/7 assay. Results: Based on results of the cytotoxicity test in CL-6 cells, 50% inhibitory concentration (IC50, Mean±SD) values of plumbagin and the standard drug 5-fluorouracil were (24.00±3.33) and (1 036.00±137.77) μmol/L, respectively. The corresponding values for OUMS cells were (57.00±5.23) and (2 147.00±209.98) μmol/L, respectively. The selectivity index was 2.28. The inhibitory activities of plumbagin on cell migration and invasion were potent and concentration-dependent with IC50 of 25.0 μmol/L and complete inhibition at 25.0 μmol/L. Flow cytometry analysis showed that plumbagin at 12.5 μmol/L (half IC50) induced CL-6 cell apoptosis (43.24% of control) through stimulation of caspase 3/7 activities. Complete cell apoptosis was observed at 12.5 μmol/L. Conclusions: The cytotoxic activity and inhibition of migration and invasion including apoptosis induction in the human CCA cell line (CL-6) suggest that plumbagin could be a promising candidate for CCA chemotherapeutics. However, its relatively low selective cytotoxic effect on CCA cells is a major concern.
  1,412 225 -