Impact Factor 2017: 1.634 (@Clarivate Analytics)
5-Year Impact Factor: 1.677 (@Clarivate Analytics)
  • Users Online: 290
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2019  |  Volume : 12  |  Issue : 3  |  Page : 98-105

Phyllanthus acidus (L.) Skeels and Rhinacanthus nasutus (L.) Kurz leaf extracts suppress melanogenesis in normal human epidermal melanocytes and reconstitutive skin culture


1 Department of Medical Technology, School of Allied Health Sciences, Walailak University, Thailand; Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Deparment of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Thailand
2 Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
3 Deparment of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Thailand

Correspondence Address:
Moragot Chatatikun
Department of Medical Technology, School of Allied Health Sciences, Walailak University, 80161 Thailand

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1995-7645.254935

Get Permissions

Objective: To determine the effect of extracts from Phyllanthus acidus (P. acidus) (L.) Skeels and Rhinacanthus nasutus (R. nasutus) (L.) Kurz leaves on melanogenesis and the underlying mechanism in normal human epidermal melanocytes (NHEM) and a reconstitutive skin model. Methods: NHEM and a reconstitutive skin model were stimulated with ethanol extracts of P. acidus (L.) Skeels and R. nasutus (L.) Kurz leaves. mRNA expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1) and dopachrome tautomerase (DCT) were examined by real-time PCR. The melanin content in NHEM was also measured. Moreover, protein levels of tyrosinase were determined using western blot analysis. Results: In NHEM and the reconstitutive skin model, ethanol extracts from P. acidus (at 12.5 and 25.0 μg/mL) and R. nasutus (at 6.25 and 12.50 μg/mL) significantly diminished mRNA expression of MITF, TYR, TYRP1 and DCT in a concentration-dependent manner. P. acidus and R. nasutus extracts also reduced the amount of melanin in α-MSH-stimulated NHEM. Moreover, P. acidus and R. nasutus extracts markedly suppressed tyrosinase at the translational level in the reconstitutive skin model. Conclusions: P. acidus and R. nasutus extracts significantly reduced melanogenesis in NHEM and the reconstitutive skin model, suggesting that P. acidus and R. nasutus extracts can inhibit melanin synthesis through downregulation of MITF, TYR, TYRP1 and DCT. Therefore, the ethanol extracts of P. acidus and R. nasutus contain compounds that have the potential for development as a skin lightening agent for the treatment of hyperpigmentation disorder or melasma.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed289    
    Printed10    
    Emailed0    
    PDF Downloaded170    
    Comments [Add]    

Recommend this journal