Impact Factor 2017: 1.634 (@Clarivate Analytics)
5-Year Impact Factor: 1.677 (@Clarivate Analytics)
  • Users Online: 174
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2018  |  Volume : 11  |  Issue : 8  |  Page : 473-479

Antihypertensive efficacy of extract of Hedera helix in high salt-induced hypertensive Sprague-Dawley rats


Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, KPK, Pakistan

Correspondence Address:
Abdul Jabbar Shah
Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, 22060
Pakistan
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1995-7645.240083

Get Permissions

Objective: To explore the antihypertensive effect of extracts from the leaves of Hedera helix (H. helix) on normotensive and hypertensive rats in-vivo followed by vasodilatory studies in-vitro. Methods: The crude methanolic extract was prepared and the activity directed fractionation was carried out. Spectrophotometric analysis of total phenolic and flavonoid content was also done. HPLC analysis was performed for the detection of hederacoside C. In-vivo blood pressure study was carried out in normotensive and high salt-induced hypertensive Sprague-Dawley rats. Isolated aortic tissues from rat and rabbit were used for in-vitro studies. The effects were recorded and analyzed through PowerLab data acquisition system. Results: Crude extract of H. helix (1-30 mg/kg) decreased blood pressure to greater extent in high salt-induced hypertensive rats in-vivo compared to the normotensive [Max. fall (58.59±0.02) mmHg vs. (67.53±3.07) mmHg]. The n-hexane, chloroform, ethyl acetate and aqueous fractions were also checked. These fractions were more effective in hypertensive rats. Aqueous fraction was more potent and n-hexane the least. In isolated rat aortic rings precontracted with phenylephrine, crude extract induced endothelium-dependent effect. The endothelium-dependent component of vasodilatory effect was ablated with L-NAME, and denudation of endothelium. The aqueous fraction was most potent vasodilator. In aortic rings from hypertensive rats, extract and fractions produced partial endothelium-independent effect which was not affected by pretreatment with L-NAME, indicating endothelium dysfunction in the hypertensive rats and suggesting additional vasodilatory mechanisms. In rabbit aorta, the extract and fractions also inhibited phenylephrine and high K+ -induced precontractions, and shifted Ca++ concentration-response curves. Conclusions: Our findings indicate that extract and fractions of H. helix are antihypertensive remedies, which is the outcome of vasodilatory effect. This vasodilatory effect is mediated through nitric oxide and Ca++ antagonism.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed251    
    Printed21    
    Emailed0    
    PDF Downloaded122    
    Comments [Add]    

Recommend this journal