Impact Factor 2017: 1.634 (@Clarivate Analytics)
5-Year Impact Factor: 1.677 (@Clarivate Analytics)
  • Users Online: 310
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2018  |  Volume : 11  |  Issue : 3  |  Page : 222-226

Effects of some common additives on the antimicrobial activities of alcohol-based hand sanitizers


1 Department of Pharmaceutics & Pharmaceutical Technology, Nnamdi Azikiwe University, Awka, Nigeria
2 Department of Pharmaceutical Technology & Industrial Pharmacy, University of Nigeria, Nsukka, Nigeria
3 Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria

Correspondence Address:
Nzekwe Ifeanyi Thaddeus
Department of Pharmaceutics & Pharmaceutical Technology, Nnamdi Azikiwe University, Awka, Anambra State
Nigeria
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1995-7645.228437

Get Permissions

Objective: To study the effects of some common additives on the antimicrobial activities of alcohol-based hand sanitizers. Methods: The antibacterial activities of varying aqueous concentrations of ethanol and isopropyl alcohol were tested by the agar well diffusion method. The influences of different concentrations of glycerin was similarly tested. Finally, isopropyl alcohol and benzalkonium chloride were combined in different ratios within the safe use concentrations of each, and the effects of these combinations were compared with values obtained for the two agents used alone. Statistical methods, such as student t test and one-way ANOVA were used when appropriate to evaluate the differences in activity. Results: The activities of the alcohols showed marked concentration dependence, and both showed peak activity at 85%–95% concentration range. Over the concentration range of 60%–100%, isopropyl alcohol inhibited more bacterial and fungal organisms than ethanol, though the inhibition zone diameters it produced were not statistically different from those of ethanol for organisms which were sensitive to both of them. Addition of glycerin reduced the antimicrobial activities of the isopropyl alcohol, as shown by reduction in the inhibition zone diameters produced in vitro, which may be due to reduced drug diffusion with increase in viscosity. Addition of benzalkonium to isopropyl alcohol systems improved the activity of the alcohol, but the overall activity of the combination was not superior to that seen in the use of benzalkonium alone. Conclusion: Alcohol-based hand sanitizers should not be used outside the concentration range of 85%–95% and isopropyl alcohol inhibits more bacterial and fungal organisms than ethanol for most concentrations. Inclusion of benzalkonium improves the antimicrobial spectrum and activity of isopropyl alcohol, and the combination may justifiably be used to achieve both immediate and long lasting effect. Glycerin may adversely affect the antimicrobial activities of isopropyl alcohol-based hand sanitizers and should be used with caution.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed755    
    Printed18    
    Emailed1    
    PDF Downloaded137    
    Comments [Add]    

Recommend this journal