Impact Factor 2017: 1.634 (@Clarivate Analytics)
5-Year Impact Factor: 1.677 (@Clarivate Analytics)
  • Users Online: 299
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2018  |  Volume : 11  |  Issue : 3  |  Page : 194-201

Mayaro virus infection, the next epidemic wave after Zika? Evolutionary and structural analysis


1 Public Health and Infectious Diseases, Sapienza University; Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Italy
2 Fundação Oswaldo Cruz, Salvador, Bahia, Brazil; University of Rome “Tor Vergata”, Rome, Italy
3 Dipartimento di Scienze Biochimiche ‟A. Rossi Fanelli", Università La Sapienza, 00185 Roma, Italy
4 Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Italy
5 Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
6 National Reference Laboratory of HIV, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
7 Department of Food Hygiene, Experimental Zooprophylactic Institute of Sardinia, Sassari, Italy
8 Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
9 Fundação Oswaldo Cruz, Salvador, Bahia, Brazil

Correspondence Address:
Massimo Ciccozzi
Unit of Clinical Laboratory Science, University Campus BioMedico of Rome, Via Alvaro del Portillo, 200, 00125 Rome
Italy
Silvia Angeletti
Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Via Alvaro del Portillo, 200, 00125 Rome
Italy
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1995-7645.228433

Get Permissions

Objective: To evaluate the evolution of the pathogen Mayaro virus, causing Mayaro fever (a mosquito-borne disease) and to perform selective pressure analysis and homology modelling. Methods: Nine different datasets were built, one for each protein (from protein C to non-structural protein 4) and the last one for the complete genome. Selective pressure and homology modelling analyses were applied. Results: Two main clades (A and B) were pointed in the maximum likelihood tree. The clade A included five Brazilian sequences sampled from 1955 to 2015. The Brazilian sequence sampled in 2014 significantly clustered with the Haitian sequence sampled in 2015. The clade B included the remaining 27 sequences sampled in the Central and Southern America from 1957 to 2013. Selective pressure analysis revealed several sites under episodic diversifying selection in envelope surface glycoprotein E1, non-structural protein 1 and non- structural protein 3 with a posterior probability P≤0.01. Homology modelling showed different sites modified by selective pressure and some protein-protein interaction sites at high interaction propensity. Conclusion: Maximum likelihood analysis confirmed the Mayaro virus previous circulation in Haiti and the successful spread to the Caribbean and USA. Selective pressure analysis revealed a strong presence of negatively selected sites, suggesting a probable purging of deleterious polymorphisms in functional genes. Homology model showed the position 31, under selective pressure, located in the edge of the ADP-ribose binding site predicting to possess a high potential of protein-protein interaction and suggesting the possible chance for a protective vaccine, thus preventing Mayaro virus urbanization as with Chikungunya virus.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed790    
    Printed35    
    Emailed0    
    PDF Downloaded197    
    Comments [Add]    

Recommend this journal