Impact Factor 2017: 1.634 (@Clarivate Analytics)
5-Year Impact Factor: 1.677 (@Clarivate Analytics)
  • Users Online: 527
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2018  |  Volume : 11  |  Issue : 2  |  Page : 123-130

Syzygium aromaticum ethanol extract reduces AlCl3-induced neurotoxicity in mice brain through regulation of amyloid precursor protein and oxidative stress gene expression


1 Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
2 Atta-ur-Rahman Institute for Natural Product Discovery, (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., ; Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E, Malaysia

Correspondence Address:
Saadia Zahid
Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad
Pakistan
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1995-7645.225019

Get Permissions

Objective: To investigate the neuroprotective effects of Syzygium aromaticum (S. aromaticum) extract (500 mg/kg) on AlCl3 (300 mg/kg)-induced mouse model of oxidative stress and neurotoxicity. Methods: An ethanolic extract of S. aromaticum seeds was prepared and the active compounds were identified using nuclear magnetic resonance spectroscopy. BALB/ c mice were divided into five groups (negative control, AlCl3-treated, self-recovery, AlCl3 + S. aromaticum, S. aromaticum only; n=10) and treated with AlCl3 and S. aromaticum extract. Expression of oxidative markers [Superoxide dismutase 1 (SOD1) and peroxiredoxin 6 (Prdx6)] and amyloid precursor protein (APP) in the hippocampus and cortex was evaluated via PCR. Histopathological assessment was performed to investigate the extent of neurodegeneration. Results: It was observed that AlCl3 exposure increased the expression of APP770 while simultaneously down regulated the expression of APP695. AlCl3 also induced a significant decrease (P<0.05) and an increase (P<0.05) in the expression level of SOD1 and Prdx6, respectively. A substantial decrease substantial (P<0.05) in the density of Nissl substance was also observed in cortex of the mice treated with AlCl3. Interestingly, treatment with S. aromaticum extract normalized the alterations in the expression level of SOD1, Prdx6 and APP isoforms and improved the neuronal structural damage. Conclusions: The results showed that S. aromaticum is a promising antioxidant and a neuroprotective agent.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed501    
    Printed23    
    Emailed0    
    PDF Downloaded143    
    Comments [Add]    

Recommend this journal