Impact Factor 2017: 1.634 (@Clarivate Analytics)
5-Year Impact Factor: 1.677 (@Clarivate Analytics)
  • Users Online: 62
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2018  |  Volume : 11  |  Issue : 2  |  Page : 116-122

Antidiabetic effects of galactomannans from Adenanthera pavonina L. in streptozotocin-induced diabetic mice


1 Technological Development Park (PADETEC), Federal University of Ceará, Pici Campus, 60455-970, Fortaleza, Ceará, Brazil
2 Department of Health and Nutrition, State University of Ceará, Av. Dr. Silas Munguba 1700, Itaperi campus, 60714-903, Fortaleza, Ceará, Brazil

Correspondence Address:
Stephen Rathinaraj Benjamin
Department of Health and Nutrition, State University of Ceará, Itaperi campus, 60714-903, Fortaleza, CE
Brazil
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1995-7645.225018

Get Permissions

Objective: To evaluate the antidiabetic effect of galactomannans extracted from Adenanthera pavonina's L. seeds (GAP) in streptozotocin (STZ) induced diabetic mice. Methods: The preliminary galactomannan yield from Adenanthera pavonina L. plant and extraction products composition were evaluated. Various chemical characterization methods like thin layer chromatography, Fourier transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance, and molecular weight by gel permeation chromatography have been employed to characterize the extracted galactomannan. The mice were divided in four groups: Normal control, diabetic control, GAP (1% and 2%) treated and standard drug treated groups. Diabetic mice received treatment daily for 30 d. Diabetes was induced by STZ at a single dose of 120 mg/kg. Body weight, water and food intake, fasting blood glucose, total cholesterol and triglycerides were measured. Histopathological analysis of pancreas and liver were performed to evaluate STZ-induced tissue injuries. Results: The isolated and extracted galactomannan from Adenanthera pavonina was confirmed by various chemical characterization methods. GAP exhibited a 1.46:1 mannose: galactose ratio, and high molar weight. Both GAP enriched food decreased glycaemia, total cholesterol and triacylglycerol. GAP didn't interfere on food intakes or body weight, although it increased water intake. Furthermore, the relative liver weight indicated toxic galactomannan effects on the histopathological changes of the pancreas in STZ induced diabetes. Conclusions: It is concluded that GAP is a natural product that contains potent galactomannan and is useful in preventing and treating diabetes.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed383    
    Printed21    
    Emailed0    
    PDF Downloaded197    
    Comments [Add]    

Recommend this journal